Symmetric Identities Involving <i>q</i>-Frobenius-Euler Polynomials under Sym (5)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Identities of the Frobenius-Euler Polynomials

and Applied Analysis 3 If n ∈ Nwith n ≡ 0 mod 2 , then we have I−1 fn − I−1 f 2 n−1 ∑ l 0 −1 l−1f l . 2.6 From 1.4 and 2.3 , we derive ∫ Zp eqdμ−1 x 2 2 q 1 − −q −1 et − −q −1 2 2 q ∞ ∑ n 0 Hn −q−1 t n n! . 2.7 Thus, we note that ∫ Zp xqdμ−1 x 2 2 q Hn −q−1 , ∫ Zp y x qdμ−1 x 2 2 q Hn −q−1, x . 2.8 Let n ∈ N with n ≡ 1 mod 2 . Then we obtain 2 q n−1 ∑ l 0 −1 ql qHm −q−1, n Hm −q−1 . 2.9 For n ∈...

متن کامل

Symmetric Identities for Euler Polynomials

In this paper we establish two symmetric identities on sums of products of Euler polynomials.

متن کامل

On Identities Involving Bernoulli and Euler Polynomials

A class of identities satisfied by both Bernoulli and Euler polynomials is established. Recurrence relations for Bernoulli and Euler numbers are derived.

متن کامل

New identities involving Bernoulli and Euler polynomials

Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki’s and Matiyasevich’s identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.

متن کامل

SOME NEW SYMMETRIC IDENTITIES INVOLVING q-GENOCCHI POLYNOMIALS UNDER S4

In the paper, we derive some new symmetric identities of q-Genocchi polynomials arising from the fermionic p-adic q-integral on Zp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish Journal of Analysis and Number Theory

سال: 2016

ISSN: 2333-1100

DOI: 10.12691/tjant-3-3-5